Download
Kruskal’s Algorithm Presentation Transcript:
1.Minimum Spanning Trees
2.Kruskal’s Algorithm
Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
3.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
4.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
5.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
6.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
7.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
8.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
9.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
10.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
11.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
12.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
13.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
14.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
15.Kruskal()
{
T = ?;
for each v ? V
MakeSet(v);
sort E by increasing edge weight w
for each (u,v) ? E (in sorted order)
if FindSet(u) ? FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
}
Source: Power Point Presentations
0 comments